1. Install Dependencies
Make sure you have LangChain and the community tools installed:2. Setting Up the Wikipedia Tool
First, import the required classes and configure the API wrapper. Two key parameters are:top_k_results: Number of Wikipedia pages to fetch (default: 1).doc_content_chars_max: Maximum characters to retrieve from each page (default: 1000).
You don’t need an API key for basic Wikipedia queries, but be mindful of rate limits if making frequent requests.
3. Inspecting Tool Metadata
Every LangChain tool exposes metadata attributes. Here’s an overview of the Wikipedia tool properties:| Attribute | Description | Example Output |
|---|---|---|
tool.name | Unique identifier for the tool | "wikipedia" |
tool.description | Brief explanation of the tool’s functionality | "A wrapper around Wikipedia..." |
tool.args | Expected input parameters (as a dict of name/type pairs) | {'query': {'title': 'Query', 'type': 'string'}} |
4. Running the Wikipedia Tool
To fetch a summary for a given topic, call therun method with a dictionary containing the "query" key:
5. Common Use Cases
You can leverage the Wikipedia tool in various application scenarios:| Use Case | Description |
|---|---|
| LCEL Chains | Wrap the tool in a function and include it in a LangChain Execution Layer. |
| RAG Pipelines | Inject Wikipedia summaries as external retrieval context for LLMs. |
| Hybrid Q&A Systems | Combine real-time Wikipedia data with LLM responses for precise answers. |
When chaining multiple tools or LLM calls, ensure you handle errors and empty results gracefully to avoid unexpected failures.
Next Steps
You’ve successfully set up and run the Wikipedia tool. In upcoming lessons, you’ll learn how to:- Build custom tools
- Orchestrate multiple tools using agents
- Integrate search, plugins, and external APIs in complex workflows