Table of Contents
- Why Debugging Matters
- Enabling Debug & Verbose Logs
- Implementing Custom Callbacks
- Further Reading & Resources
Why Debugging Matters
Without clear logs, it’s nearly impossible to pinpoint where things went awry—in prompt construction, LLM invocation, or output parsing. Adding debug instrumentation helps you:- Trace prompt transformations
- Inspect API payloads and responses
- Identify latency and performance bottlenecks
Enabling Debug & Verbose Logs
LangChain provides built-in flags for detailed logging. You can turn them on in code or via environment variables.| Option | Description | Example Usage |
|---|---|---|
verbose=True | Logs API requests & responses | python<br>from langchain import OpenAI<br>llm = OpenAI(verbose=True) |
LANGCHAIN_HANDLER | Sets the logging handler at runtime | bash<br>export LANGCHAIN_HANDLER="langchain.debug"<br>python app.py |
Enabling verbose or debug mode can produce large volumes of logs—use filters or log rotation to manage output size in production.
Implementing Custom Callbacks
Callbacks let you hook into LangChain’s lifecycle events to capture inputs, outputs, and metadata.Heavy callback logic can slow down your chain. If you need extensive processing, consider batching or asynchronous handlers.