Learn to implement a RAG pipeline using web pages, covering loader selection, content splitting, embedding generation, vector storage, retrieval, and QA.
In this tutorial, you’ll learn how to implement a complete RAG pipeline using web pages instead of PDFs. We’ll cover:
Loader selection
Content splitting
Embedding generation
Vector storage
Retrieval & formatting
QA over the retrieved context
By the end, you’ll have a reusable recipe for answering questions grounded in any web article.
Generate embeddings for each text chunk and store them in Chroma.
Copy
Ask AI
# Initialize the embedding modelembeddings = OpenAIEmbeddings(model="text-embedding-3-large")# Create a Chroma vector store from the chunksvectorstore = Chroma.from_documents( documents=chunks, embedding=embeddings)# Prepare a retriever interfaceretriever = vectorstore.as_retriever()
Invoke the chain with any factual question related to the web page.
Copy
Ask AI
result = chain.invoke("What's the size of the largest Llama 3 model?")print(result)# Expected output: "The largest Llama 3 model will have over 400 billion parameters."
You can adapt the question to explore any section of the article or domain-specific content.