Learn to write clear, maintainable documentation in Python code for FastAPI services, covering comments, docstrings, Pydantic models, and README generation.
In this guide, you’ll learn how to write clear, maintainable documentation directly inside your Python code. We’ll cover:
Inline comments help readers follow the code flow without jumping to external docs:
Copy
Ask AI
@router.post("/getfakedata")async def generate_fake_data(request: FakeDataRequest) -> dict: # Fetch fake data based on request parameters data = get_fake_data(request.data_type, request.count) # Return JSON response with the data list return {"data": data}
Keep inline comments concise—explain why, not what. The code itself should reveal the “what.”
Use PEP 257-style docstrings to detail arguments, return values, and examples:
Copy
Ask AI
@router.post("/getfakedata")async def generate_fake_data(request: FakeDataRequest) -> dict: """ Generate fake data according to the provided request. Args: request (FakeDataRequest): - data_type (str): Type of data (e.g., "user", "email"). - count (int): Number of items to generate. Returns: dict: JSON response with a "data" key containing the list of results. Example: POST /getfakedata { "data_type": "user", "count": 5 } """ data = get_fake_data(request.data_type, request.count) return {"data": data}
Enhance your request schema with docstrings for automatic API docs (Swagger UI):
Copy
Ask AI
from pydantic import BaseModelfrom typing import Optionalclass FakeDataRequest(BaseModel): """ Request model for the fake data generator. Attributes: data_type (str): The category of data to produce (e.g., "name", "email"). count (int): Number of records to generate. locale (Optional[str]): Locale for formatting (default: "en_US"). """ data_type: str count: int locale: Optional[str] = "en_US"
Copy
Ask AI
127.0.0.1:8000 - "POST /getfakedata HTTP/1.1" 200 OK
Docstrings: Follow PEP 257 for consistency and auto-generated docs.
Copilot: Speeds up writing but always review AI-generated text.
Pydantic Models: Document attributes for better schema validation and API docs.
Documented code helps teams onboard faster and reduces maintenance overhead. Next, explore unit testing strategies to ensure your endpoints behave as expected.