Leverage descriptive comments to auto-generate boilerplate classes, methods, and tests in Python using GitHub Copilot for faster development and consistency.
Leverage descriptive comments to auto-generate boilerplate classes, domain-specific methods, and tests in Python using GitHub Copilot. This workflow speeds up development and enforces consistency across your codebase.
Comment-driven development (CDD) lets you write plain-English comments that describe the code you need. GitHub Copilot reads these comments and generates the corresponding implementation, including:
Classes with type hints and validation
Data-processing methods
Standalone functions
pytest unit tests
CDD reduces boilerplate and keeps your focus on business logic.
Open main.py and write a high-level description of the class you want:
Copy
Ask AI
# Create an Employee class with name, age, and salary attributes# Include type hints and validation for each field
GitHub Copilot will trigger on typing patterns like def or class. Press Tab (or your configured shortcut) to accept the suggestion.
After accepting Copilot’s suggestion, your file should look like this:
Copy
Ask AI
import pandas as pdimport numpy as npclass Employee: def __init__(self, name: str, age: int, salary: float): self.name = name self.age = age self.salary = salary @property def name(self) -> str: return self._name @name.setter def name(self, value: str): if not isinstance(value, str): raise TypeError("Name must be a string") self._name = value @property def age(self) -> int: return self._age @age.setter def age(self, value: int): if not isinstance(value, int): raise TypeError("Age must be an integer") self._age = value @property def salary(self) -> float: return self._salary @salary.setter def salary(self, value: float): if not isinstance(value, (int, float)): raise TypeError("Salary must be a number") self._salary = value
Standalone functions are just as easy. In main.py, add:
Copy
Ask AI
# Validate trading parameters before order execution
Copilot generates:
Copy
Ask AI
def validate_trading_parameters(price: float, volume: int, symbol: str) -> bool: """Validate trading parameters before order execution""" if not isinstance(price, (int, float)): raise TypeError("Price must be a number") if not isinstance(volume, int): raise TypeError("Volume must be an integer") if not isinstance(symbol, str): raise TypeError("Symbol must be a string") if price <= 0: raise ValueError("Price must be positive") if volume <= 0: raise ValueError("Volume must be positive") return True